Marcin Gronowski

Computational Chemistry


Electronic absorption and phosphorescence of cyanodiacetylene

Electronic absorption and emission spectra have been investigated for cyanodiacetylene, HC5N, an astrophysically relevant molecule. The analysis of gas-phase absorption was assisted with the parallel rare gas matrix isolation experiments and with density functional theory (DFT) predictions concerning the excited electronic states. Mid-UV systems: B1Δ←X1Σ+  (origin at 282.5 nm) and B1Σ←X1Σ+ (306.8 nm) were observed. Vibronic assignments have been facilitated by the discovery of the visible phosphorescence a3Σ+←X1Σ+ in solid Ar, Kr, and Xe. Phosphorescence excitation spectra, as well as UV absorption measurements in rare gas matrices, revealed the enhancement of A←X transitions. The vibronic structure of dispersed phosphorescence spectra supplied new data concerning the ground state bending fundamentals of matrix-isolated HC5N. The experimental singlet-triplet splitting, 2.92 eV in Ar, closely matches the value of 3.0 eV predicted by DFT.

Full text: J. Chem. Phys. 133 (2010) 074310

Tags: , , ,

Comments are closed.